论文标题

I型cartan域上的径向样toeplitz操作员

Radial-like Toeplitz operators on Cartan domains of type I

论文作者

Quiroga-Barranco, Raul

论文摘要

令$ \ mathrm {d}^\ mathrm {i} _ {n \ times n} $是I型的cartan域,由复杂的$ n \ times n $矩阵$ z $组成,可以满足$ z^*z^z <i_n $。对于一个符号$ a \ in l^\ infty(\ mathrm {d}^\ mathrm {i} _ {n \ times n})$,我们考虑三个类似径向的类型条件:1)左(右)$ \ mathrm {u}(u}(u}(u}(n))$ - 可以通过$ ncords $ a a(z)定义的n(z)= a \ big(((z^*z)^\ frac {1} {2} \ big)$($ a(z)= a \ big(((zz^*)^\ frac {1} {2} {2} \ big)$,分别为$),和2),2)$ \ mathrm {u}(n)由条件$ a(a^{ - 1} zb)= a(z)$定义,每个$ a,b \ in \ mathrm {u}(n)$。我们证明,对于$ n \ geq 2 $,这些产生了不同的符号集。如果$ a $满足1),则左或向右,$ b $满足2),那么我们证明,相应的Toeplitz运营商$ T_A $和$ T_B $通勤在每个加权伯格曼空间上。此外,在满足的条件1)中,左或右,对于$ n \ geq 2 $,符号$ a $,其相应的toeplitz运算符$ t_a $是非正常的。我们使用这些事实来证明$ n \ geq 2 $的存在,是由Toeplitz Operators生成的可交换banach non-$ c^*$代数。

Let $\mathrm{D}^\mathrm{I}_{n \times n}$ be the Cartan domain of type I which consists of the complex $n \times n$ matrices $Z$ that satisfy $Z^*Z < I_n$. For a symbol $a \in L^\infty(\mathrm{D}^\mathrm{I}_{n \times n})$ we consider three radial-like type conditions: 1) left (right) $\mathrm{U}(n)$-invariant symbols, which can be defined by the condition $a(Z) = a\big((Z^*Z)^\frac{1}{2}\big)$ ($a(Z) = a\big((ZZ^*)^\frac{1}{2}\big)$, respectively), and 2) $\mathrm{U}(n) \times \mathrm{U}(n)$-invariant symbols, which are defined by the condition $a(A^{-1}ZB) = a(Z)$ for every $A, B \in \mathrm{U}(n)$. We prove that, for $n \geq 2$, these yield different sets of symbols. If $a$ satisfies 1), either left or right, and $b$ satisfies 2), then we prove that the corresponding Toeplitz operators $T_a$ and $T_b$ commute on every weighted Bergman space. Furthermore, among those satisfying condition 1), either left or right, there exist, for $n \geq 2$, symbols $a$ whose corresponding Toeplitz operators $T_a$ are non-normal. We use these facts to prove the existence, for $n \geq 2$, of commutative Banach non-$C^*$ algebras generated by Toeplitz operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源