论文标题
与国家管理的善解人意响应产生
Empathetic Response Generation with State Management
论文作者
论文摘要
良好的善解人意对话系统应首先跟踪并理解用户的情绪,然后以适当的情感回复。但是,目前对此任务的方法要么集中于提高对用户情绪的理解,要么是提出更好的反应策略,而且很少有作品同时考虑这两种策略。我们的工作试图填补这一空缺。受任务为导向的对话系统的启发,我们提出了一种具有情感感知对话管理的新颖善解人意的响应生成模型。情绪吸引的对话管理包含两个部分:(1)情绪状态跟踪保持当前用户的情绪状态,(2)善解人意的对话策略选择预测目标情绪和用户的意图,并根据情绪状态跟踪的结果。然后,预测信息用于指导响应的产生。实验结果表明,与自动评估和人类评估下的几个基线相比,动态管理不同的信息可以帮助模型产生更多的移情反应。
A good empathetic dialogue system should first track and understand a user's emotion and then reply with an appropriate emotion. However, current approaches to this task either focus on improving the understanding of users' emotion or on proposing better responding strategies, and very few works consider both at the same time. Our work attempts to fill this vacancy. Inspired by task-oriented dialogue systems, we propose a novel empathetic response generation model with emotion-aware dialogue management. The emotion-aware dialogue management contains two parts: (1) Emotion state tracking maintains the current emotion state of the user and (2) Empathetic dialogue policy selection predicts a target emotion and a user's intent based on the results of the emotion state tracking. The predicted information is then used to guide the generation of responses. Experimental results show that dynamically managing different information can help the model generate more empathetic responses compared with several baselines under both automatic and human evaluations.