论文标题

我们应该依靠实体提及与关系提取吗?通过反事实分析提取偏见的关系提取

Should We Rely on Entity Mentions for Relation Extraction? Debiasing Relation Extraction with Counterfactual Analysis

论文作者

Wang, Yiwei, Chen, Muhao, Zhou, Wenxuan, Cai, Yujun, Liang, Yuxuan, Liu, Dayiheng, Yang, Baosong, Liu, Juncheng, Hooi, Bryan

论文摘要

最近的文献重点是利用句子级别关系提取(RE)中的实体信息,但这有可能泄漏肤浅和虚假的关系线索。结果,RE仍然遭受意外的实体偏见,即实体提到(名称)和关系之间的虚假相关性。实体偏见可能会误导RE模型,以提取文本中不存在的关系。为了解决这个问题,一些以前的工作掩盖了实体提到的,以防止重新模型过于拟合实体提及。但是,该策略降低了RE性能,因为它失去了实体的语义信息。在本文中,我们提出了核心(基于反事实分析的关系提取)偏差方法,该方法指导RE模型专注于文本上下文的主要影响而不会丢失实体信息。我们首先为RE构建了一个因果图,该图形模拟了RE模型中变量之间的依赖关系。然后,我们建议对我们的因果图进行反事实分析以提炼和减轻实体偏见,从而捕获每个实体在每个实例中提到的因果效应。请注意,我们的核心方法在推理期间对DEBIAS现有的RE系统是模型不合时宜的,而无需更改其训练过程。广泛的实验结果表明,我们的核心在RE的有效性和概括方面都带来了显着增长。提供源代码,网址为:https://github.com/vanoracai/core。

Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from overfitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CORE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CORE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CORE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源