论文标题

无监督的同型估计与Coclanarity-ware gan

Unsupervised Homography Estimation with Coplanarity-Aware GAN

论文作者

Hong, Mingbo, Lu, Yuhang, Ye, Nianjin, Lin, Chunyu, Zhao, Qijun, Liu, Shuaicheng

论文摘要

从图像对估算同构图是图像对齐中的一个基本问题。由于其有希望的表现和无标签的培训,无监督的学习方法在该领域受到了越来越多的关注。但是,现有方法并未明确考虑平面诱导的视差问题,这将使预测的同型在多个平面上受到妥协。在这项工作中,我们提出了一种新型方法,以指导无监督的同构量估计,以专注于优势平面。首先,多尺度变压器网络旨在以粗到精细的方式从输入图像的特征金字塔中预测同构。此外,我们提出一个无监督的gan对预测的同构象对共同性约束施加了约束,这是通过使用发电机来预测对齐区域的掩码来实现的,然后一个歧视者检查两个蒙版特征图是否由单个同型构造引起。为了验证同性恋及其组件的有效性,我们在大规模数据集上进行了广泛的实验,结果表明,我们的匹配误差比以前的SOTA方法低22%。代码可在https://github.com/megvii-research/homogan上找到。

Estimating homography from an image pair is a fundamental problem in image alignment. Unsupervised learning methods have received increasing attention in this field due to their promising performance and label-free training. However, existing methods do not explicitly consider the problem of plane-induced parallax, which will make the predicted homography compromised on multiple planes. In this work, we propose a novel method HomoGAN to guide unsupervised homography estimation to focus on the dominant plane. First, a multi-scale transformer network is designed to predict homography from the feature pyramids of input images in a coarse-to-fine fashion. Moreover, we propose an unsupervised GAN to impose coplanarity constraint on the predicted homography, which is realized by using a generator to predict a mask of aligned regions, and then a discriminator to check if two masked feature maps are induced by a single homography. To validate the effectiveness of HomoGAN and its components, we conduct extensive experiments on a large-scale dataset, and the results show that our matching error is 22% lower than the previous SOTA method. Code is available at https://github.com/megvii-research/HomoGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源