论文标题

具有多个预测的在线算法

Online Algorithms with Multiple Predictions

论文作者

Anand, Keerti, Ge, Rong, Kumar, Amit, Panigrahi, Debmalya

论文摘要

本文在线研究了通过多个机器学习预测增强的。尽管近年来已经对随着单个预测进行了扩展的在线算法进行了广泛的研究,但多个预测设置的文献却很少。在本文中,我们提供了一个通用算法框架,用于在线介绍多个预测的问题,该框架获得了在线解决方案,该解决方案具有与最佳预测指标的性能相对的竞争力。我们的算法将预测的使用纳入了在线算法的经典分析中。我们应用算法框架来解决经典问题,例如在线封面,(加权)缓存和在线设施位置,以多个预测设置。我们的算法也可以鲁棒化,即,可以根据最佳的预测和最佳在线算法的性能(无预测)同时使算法具有竞争力。

This paper studies online algorithms augmented with multiple machine-learned predictions. While online algorithms augmented with a single prediction have been extensively studied in recent years, the literature for the multiple predictions setting is sparse. In this paper, we give a generic algorithmic framework for online covering problems with multiple predictions that obtains an online solution that is competitive against the performance of the best predictor. Our algorithm incorporates the use of predictions in the classic potential-based analysis of online algorithms. We apply our algorithmic framework to solve classical problems such as online set cover, (weighted) caching, and online facility location in the multiple predictions setting. Our algorithm can also be robustified, i.e., the algorithm can be simultaneously made competitive against the best prediction and the performance of the best online algorithm (without prediction).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源