论文标题

时空种群动态和对流行病扩散的应用的数学建模

Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading

论文作者

Winkelmann, Stefanie, Zonker, Johannes, Schütte, Christof, Conrad, Natasa Djurdjevac

论文摘要

基于代理的模型(ABM)是建模时空种群动态的有用工具,其中许多细节都可以包含在模型描述中。他们的计算成本很高,对于随机ABM,需要大量单独的模拟才能采样兴趣的数量。特别是,大量的代理使采样不可行。模型还原为种群模型会导致计算效率的显着提高,同时保留重要的动力学特性。基于对时空ABM的精确数学描述,我们提出了两种不同的种群方法(随机和分段确定性),并讨论此框架中不同模型之间的近似步骤。尤其是,我们展示了随机化种群模型如何来自基础ABM的盖金投影在有限维的ANSATZ空间上。最后,我们利用我们的建模框架为Covid-19提供了一个概念模型,该模型可以缩放到现实世界的场景。

Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源