论文标题
重新归一化组改善了希格斯至两个胶状衰减率
Renormalization-group improved Higgs to two gluons decay rate
论文作者
论文摘要
我们以$ h \ rightarrow gg $衰减的速率的重归于组规模和计划依赖性,该顺序n $^4 $ lo在重级范围内的扰动理论中,该理论采用了所有肾函数可访问的对数的总和,包括所有可访问的对数,包括领先的领先和后续的四个第四个subead subead subead sead subgarith-logarith-logarithmic贡献全面的贡献。此外,我们研究了在四种不同的重新归一化方案中使用渐近Padé近似方法研究$ h \ rightarrow gg $衰减宽度的高阶行为。此外,在渐近Padé-borel近似方法的框架中独立研究了高阶行为,在渐近Padé-borel近似方法中,广义的Borel-Transform用作原始扰动扩张的分析延续。发现渐近PADé-borel近似方法的预测与渐近Padé近似方法的预测是一致的。最后,我们在固定顺序$γ_ {\ rm n^5lo} \,= \,γ_0(1.8375 \ pm 0.047_ 0.0066_ {m_h} \ pm 0.0036 _ {\ rm p} \ pm 0.007 _ {\ text {s}} \ pm 0.0005_ {sc}),$和$γ_{\ rm rgsn^5lo} \ rm rgsn^5lo} \, \ pm 0.0005_ {m_t} \ pm 0.0066_ {m_h} \ pm0.0002_μ\ pm 0.0027 _ {\ rm p} \ pm pm 0.001_ {sc})$ in Renormalization-Alaralization-Group-group-group-group rupted扰动理论。
We investigate the renormalization-group scale and scheme dependence of the $H \rightarrow gg$ decay rate at the order N$^4$LO in the renormalization-group summed perturbative theory, which employs the summation of all renormalization-group accessible logarithms including the leading and subsequent four sub-leading logarithmic contributions to the full perturbative series expansion. Moreover, we study the higher-order behaviour of the $H \rightarrow gg$ decay width using the asymptotic Padé approximant method in four different renormalization schemes. Furthermore, the higher-order behaviour is independently investigated in the framework of the asymptotic Padé-Borel approximant method where generalized Borel-transform is used as an analytic continuation of the original perturbative expansion. The predictions of the asymptotic Padé-Borel approximant method are found to be in agreement with that of the asymptotic Padé approximant method. Finally, we provide the $H \rightarrow gg$ decay rate at the order N$^5$LO in the fixed-order $ Γ_{\rm N^5LO} \,=\, Γ_0 (1.8375 \pm 0.047 _{α_s(M_Z),1\%}\pm 0.0004_{M_t} \pm 0.0066_{M_H} \pm 0.0036_{\rm P} \pm 0.007_{\text{s}} \pm 0.0005_{sc} ),$ and $Γ_{\rm RGSN^5LO} \,=\, Γ_0 (1.841 \pm 0.047 _{α_s(M_Z),1\%} \pm 0.0005_{M_t}\pm 0.0066_{M_H} \pm 0.0002_μ \pm 0.0027_{\rm P} \pm 0.001_{sc} )$ in the renormalization-group summed perturbative theories.