论文标题

使用术中内窥镜数字视频对肾结石的深层形态学识别

Deep morphological recognition of kidney stones using intra-operative endoscopic digital videos

论文作者

Estrade, Vincent, Daudon, Michel, Richard, Emmanuel, Bernhard, Jean-Christophe, Bladou, Franck, Robert, Gregoire, Facq, Laurent, de Senneville, Baudouin Denis

论文摘要

肾结石形态标准的收集和分析对于对石材疾病的病因诊断至关重要。但是,尿石的基于原位激光的碎片化(现在是最成熟的chirurgical干预措施)可能会破坏目标石的形态。在当前的研究中,我们评估了处理完整的数字内窥镜视频序列的性能和附加值,以自动识别术中标准的术中石材形态特征。为此,开发了计算机辅助的视频分类器,以使用在临床环境中获得的术中数字内窥镜视频来预测石材的形态。 对所提出的技术进行了纯净的(即包括一种形态)和混合(即至少包括两个形态学)的结石,其中涉及“ Ia/Ocium Ocium Ocium Ocium Ocium Olagate Moneydrate(COM)”,“ IIB/Oxaalate carcalate dihydrate(CoD)(COD)(COD)”(COD)(COD)和“ IIIB/URIC AIDIC(UA)” Morphologies。使用拟议的视频分类器(总共处理了56840帧),分析了71个数字内窥镜视频(仅50个形态类型和21种显示的形态类型和21种显示)。使用建议的方法,诊断性能(纯石材类型和混合石类型的平均)如下:平衡精度= 88%,灵敏度= 80%,特异性= 95%,精度= 78%和F1得分= 78%。 获得的结果表明,应用于数字内窥镜视频序列的AI是在石材碎片化过程的时间内收集形态信息的有前途的工具,而无需诉诸于任何人类干预石材划定或选择高质量的稳定框架。为此,必须从框架和像素级别的预测过程中删除无关的图像信息,这要归功于使用AI-dedicatienated网络,这是可行的。

The collection and the analysis of kidney stone morphological criteria are essential for an aetiological diagnosis of stone disease. However, in-situ LASER-based fragmentation of urinary stones, which is now the most established chirurgical intervention, may destroy the morphology of the targeted stone. In the current study, we assess the performance and added value of processing complete digital endoscopic video sequences for the automatic recognition of stone morphological features during a standard-of-care intra-operative session. To this end, a computer-aided video classifier was developed to predict in-situ the morphology of stone using an intra-operative digital endoscopic video acquired in a clinical setting. The proposed technique was evaluated on pure (i.e. include one morphology) and mixed (i.e. include at least two morphologies) stones involving "Ia/Calcium Oxalate Monohydrate (COM)", "IIb/ Calcium Oxalate Dihydrate (COD)" and "IIIb/Uric Acid (UA)" morphologies. 71 digital endoscopic videos (50 exhibited only one morphological type and 21 displayed two) were analyzed using the proposed video classifier (56840 frames processed in total). Using the proposed approach, diagnostic performances (averaged over both pure and mixed stone types) were as follows: balanced accuracy=88%, sensitivity=80%, specificity=95%, precision=78% and F1-score=78%. The obtained results demonstrate that AI applied on digital endoscopic video sequences is a promising tool for collecting morphological information during the time-course of the stone fragmentation process without resorting to any human intervention for stone delineation or selection of good quality steady frames. To this end, irrelevant image information must be removed from the prediction process at both frame and pixel levels, which is now feasible thanks to the use of AI-dedicated networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源