论文标题
平衡分配:大量加载的外壳带有删除
Balanced Allocations: The Heavily Loaded Case with Deletions
论文作者
论文摘要
在2个选择分配问题中,$ m $球被放入$ n $ bins,每个球都必须在分配给它的两个随机bins $ i,j \ in [n] $之间选择。已经知道了二十年来,如果每个球都遵循贪婪的策略(即,始终选择不足的垃圾箱),则最大负载为$ m / n + o(\ log \ log \ log \ log \ log \ log \ log n)$,具有$ n $的可能性很高($ n $(和$ m / n + o(\ log m)$(\ log M)$,具有$ m $的可能性很高)。无论是否在同一游戏的动态版本中保持相同的界限,在该界限中插入/删除了最多$ m $ $球。 我们表明,这些界限在动态设置中不存在:已经在$ 4 $的垃圾箱中,存在一系列插入/删除,导致{Greedy}的最大负载为$ M/4 +ω(\ sqrt {m} $ ch),并以可能的情况与每个BALL分配了BIN! 这就提出了一个问题,即是否有2个选择分配策略可以在动态环境中提供强大的限制。我们的第二个结果以肯定的方式回答了这个问题:我们提出了一种称为ModualdedGreedy的新策略,可确保在任何给定时刻的最大负载$ m / n + O(\ log M)$,并且$ m $的可能性很高。概括调制的greedy,我们获得了$(1 +β)$ - 选择设置的动态保证,以及图表上的球和bins的设置。 最后,我们考虑了一个设置,在删除球后可以重新插入球,以及在插入之间给定球使用的$ i,j $的设置。这种看似很小的修改使得不可能进行紧密的负载平衡:在4个垃圾箱上,任何遗忘了球的策略都必须在第一个$ poly(m)$ insertions/删除的某个时候允许$ m/4 + poly(m)$的最大负载,并具有$ m $的可能性很高。
In the 2-choice allocation problem, $m$ balls are placed into $n$ bins, and each ball must choose between two random bins $i, j \in [n]$ that it has been assigned to. It has been known for more than two decades, that if each ball follows the Greedy strategy (i.e., always pick the less-full bin), then the maximum load will be $m/n + O(\log \log n)$ with high probability in $n$ (and $m / n + O(\log m)$ with high probability in $m$). It has remained open whether the same bounds hold in the dynamic version of the same game, where balls are inserted/deleted with up to $m$ balls present at a time. We show that these bounds do not hold in the dynamic setting: already on $4$ bins, there exists a sequence of insertions/deletions that cause {Greedy} to incur a maximum load of $m/4 + Ω(\sqrt{m})$ with probability $Ω(1)$ -- this is the same bound as if each ball is simply assigned to a random bin! This raises the question of whether any 2-choice allocation strategy can offer a strong bound in the dynamic setting. Our second result answers this question in the affirmative: we present a new strategy, called ModulatedGreedy, that guarantees a maximum load of $m / n + O(\log m)$, at any given moment, with high probability in $m$. Generalizing ModulatedGreedy, we obtain dynamic guarantees for the $(1 + β)$-choice setting, and for the setting of balls-and-bins on a graph. Finally, we consider a setting in which balls can be reinserted after they are deleted, and where the pair $i, j$ that a given ball uses is consistent across insertions. This seemingly small modification renders tight load balancing impossible: on 4 bins, any strategy that is oblivious to the specific identities of balls must allow for a maximum load of $m/4 + poly(m)$ at some point in the first $poly(m)$ insertions/deletions, with high probability in $m$.