论文标题

喷气空间中的度量线

Metric lines in Jet Space

论文作者

Bravo-Doddoli, Alejandro

论文摘要

给定一个亚riemannian歧管,一个相关的问题是:什么是度量线(真实线的等距嵌入)? The space of $k$-jets of a real function of one real variable $x$, denoted by $J^k(\mathbb{R},\mathbb{R})$, admits the structure of a Carnot group, as every Carnot group $J^k(\mathbb{R},\mathbb{R})$ is a sub-Riemannian Manifold.这项工作致力于在$ j^k(\ mathbb {r},\ mathbb {r})$中对公制行的分类提供部分结果。证明主要定理的方法是使用中间体$ 3 $二维的次 - riemannian Space $ \ Mathbb {r}^{3}^{3} _f $位于组$ j^k之间J^k(\ Mathbb {r},\ Mathbb {r}) / [J^k(\ Mathbb {r},\ Mathbb {r}),j^k(\ Mathbb {r {r},\ Mathbb {r})] $。

Given a sub-Riemannian manifold, a relevant question is: what are the metric lines (isometric embedding of the real line)? The space of $k$-jets of a real function of one real variable $x$, denoted by $J^k(\mathbb{R},\mathbb{R})$, admits the structure of a Carnot group, as every Carnot group $J^k(\mathbb{R},\mathbb{R})$ is a sub-Riemannian Manifold. This work is devoted to provide a partial result about the classification of the metric lines in $J^k(\mathbb{R},\mathbb{R})$. The method to prove the main Theorems is to use an intermediate $3$-dimensional sub-Riemannian space $\mathbb{R}^{3}_F$ lying between the group $J^k(\mathbb{R},\mathbb{R})$ and the Euclidean space $\mathbb{R}^{2} \simeq J^k(\mathbb{R},\mathbb{R}) / [J^k(\mathbb{R},\mathbb{R}),J^k(\mathbb{R},\mathbb{R})]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源