论文标题
通过报告引导的对比训练,通过固定的病理识别破裂
Breaking with Fixed Set Pathology Recognition through Report-Guided Contrastive Training
论文作者
论文摘要
阅读图像时,放射科医生会生成描述其中发现的文本报告。当前最新的计算机辅助诊断工具利用了一组固定的预定义类别自动从这些医学报告中提取以进行培训。这种监督形式限制了模型的潜在用法,因为它们无法对其预定义集合之外的异常进行拾取,因此,在面对新型类别时,必须使用其他数据来重新训练分类器。相反,我们研究了直接的文本监督,以脱离这个封闭的假设。通过这样做,我们避免通过文本分类器提取嘈杂的标签,并结合更多上下文信息。 我们采用对比度的全球双重编码体架构来直接从非结构化医疗报告中学习概念,同时保持其执行自由形式分类的能力。 我们研究了放射学数据开放式识别的相关特性,并提出了一种将当前弱注释数据纳入培训的方法。 我们在大规模的胸部X射线数据集上评估了我们的方法模仿CXR,CHEXPERT和CHESTX-RAY14进行疾病分类。我们表明,尽管使用了非结构化的医疗报告监督,但我们通过复杂的推理环境以直接标签监督的方式执行。
When reading images, radiologists generate text reports describing the findings therein. Current state-of-the-art computer-aided diagnosis tools utilize a fixed set of predefined categories automatically extracted from these medical reports for training. This form of supervision limits the potential usage of models as they are unable to pick up on anomalies outside of their predefined set, thus, making it a necessity to retrain the classifier with additional data when faced with novel classes. In contrast, we investigate direct text supervision to break away from this closed set assumption. By doing so, we avoid noisy label extraction via text classifiers and incorporate more contextual information. We employ a contrastive global-local dual-encoder architecture to learn concepts directly from unstructured medical reports while maintaining its ability to perform free form classification. We investigate relevant properties of open set recognition for radiological data and propose a method to employ currently weakly annotated data into training. We evaluate our approach on the large-scale chest X-Ray datasets MIMIC-CXR, CheXpert, and ChestX-Ray14 for disease classification. We show that despite using unstructured medical report supervision, we perform on par with direct label supervision through a sophisticated inference setting.