论文标题

密度为$ z_3 $ - 流向关键图

On density of $Z_3$-flow-critical graphs

论文作者

Dvořák, Zdeněk, Mohar, Bojan

论文摘要

对于Abelian Group $γ$,如果$ g $不承认零零$γ$ -Flow,则据说图$ G $是$γ$ - 流量的,但对于E(g)$中的每个边缘$ e \,CONTRACTION $ g/e $都不是零元素$ g $γ$ -Flow。获得了在固定表面上绘制的$ z_3 $ - 流界图的密度的结合,从Kostochka和Yancey概括了绑定在4-临界图的密度上的平面情况。

For an abelian group $Γ$, a graph $G$ is said to be $Γ$-flow-critical if $G$ does not admit a nowhere-zero $Γ$-flow, but for each edge $e\in E(G)$, the contraction $G/e$ has a nowhere-zero $Γ$-flow. A bound on the density of $Z_3$-flow-critical graphs drawn on a fixed surface is obtained, generalizing the planar case of the bound on the density of 4-critical graphs by Kostochka and Yancey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源