论文标题
$ \ mathbb p^3 $中的五点配置及其限制
Configuration of five points in $\mathbb P^3$ and their limits
论文作者
论文摘要
通过明确描述$ gl_4 $的对角线封闭,我们将$ gl_4 $的对角动作的对角动作的对角动作进行分类,并在对角线封闭的字段上进行$ gl_4 $的分类,这是对$ gl_4 $的对角线上的$ gl_4 $的明确描述。这是第二个最简单的设置,其中$ g $的$ h $的还原子组在(概括)标志品种$ g $ of $ g $但$ \#(h \ backslash x)= \ infty $中具有开放轨道。也给出了无限多个轨道之间的封闭关系。
We give a classification of ordered five points in $\mathbb P^3$ under the diagonal action of $GL_4$ over an algebraically closed field of characteristic $0$, by an explicit description of the diagonal action of $GL_4$ on the quintuple of the projective varieties $\mathbb P^3$. This is the second simplest setting, where a reductive subgroup of $H$ of $G$ has an open orbit in a (generalised) flag variety $X$ of $G$ but $\#(H\backslash X)=\infty$. The closure relations among infinitely many orbits are also given.