论文标题

基于CT的放射线学对头部和颈部的解剖结构进行分类

Classification of anatomic structures in head and neck by CT-based radiomics

论文作者

Watanabe, Yoichi, Biswas, A., Rangarajan, K., Rath, G., Gopishankar, N.

论文摘要

背景和目的:放射组学特征用于识别疾病类型并预测治疗结果。但是,从未研究过不同解剖结构之间的放射素特征不同。因此,我们分析了CT图像中头部和颈部22个解剖结构的放射线特征。此外,我们研究了CT放射线学是否可以使用无监督的机器学习技术对头部和颈部的解剖结构进行分类。材料和方法:我们从单个机构的36例患者获得了IMRT/VMAT治疗计划数据。在计划CTS上绘制的22个以上解剖结构的轮廓有1357个轮廓。我们使用SIBEX程序计算了174个放射线特征。首先,我们测试了解剖结构的放射线特征是否足够独特,可以将所有轮廓分为22组。然后,我们开发了一种两阶段的聚类技术,将22个解剖结构分类为具有相似生理或生物学特征的亚组。结果:22个解剖结构的174个放射线特征的热图显示肿瘤和其他健康结构之间存在明显差异。放射线学特征使我们能够识别具有超过90%精度的眼睛,镜头,下颌,垂体和甲状腺。 22个结构的两阶段聚类产生了六个亚组,它们具有共同的特征,例如脂肪和骨组织。结论:我们已经表明,头部和颈部肿瘤中的解剖结构具有可区分的放射线特征。我们可以观察到结构亚组之间特征的相似性。结果表明,CT放射线学可以帮助区分头颈病变的生物学特征。

Background and Purpose: Radiomics features are used to identify disease types and predict therapy outcomes. However, how the radiomics features are different among different anatomical structures has never been investigated. Hence, we analyzed the radiomics features of 22 anatomical structures in the head and neck area in CT images. Furthermore, we studied whether CT radiomics can classify anatomical structures of the head and neck using unsupervised machine-learning techniques. Materials and methods: We obtained IMRT/VMAT treatment planning data from 36 patients treated for head and neck cancers in a single institution. There were 1357 contours of more than 22 anatomical structures drawn on planning CTs. We calculated 174 radiomics features using the SIBEX program. First, we tested whether the radiomics features of anatomical structures were unique enough to classify all contours into 22 groups. We then developed a two-stage clustering technique to classify 22 anatomic structures into sub-groups with similar physiological or biological characteristics. Results: The heatmap of 174 radiomics features of 22 anatomical structures showed a distinct difference among tumors and other healthy structures. Radiomics features have allowed us to identify the eyes, lens, submandibular, pituitary glands, and thyroids with over 90% accuracy. The two-stage clustering of 22 structures resulted in six subgroups, which shared common characteristics such as fatty and bony tissues. Conclusions: We have shown that anatomical structures in head and neck tumors have distinguishable radiomics features. We could observe similarities of features among subgroups of the structures. The results suggest that CT radiomics can help distinguish the biological characteristics of head and neck lesions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源