论文标题

非线性波形反演用于定量超声

Nonlinear Waveform Inversion for Quantitative Ultrasound

论文作者

Shultzman, Avner, Eldar, Yonina C.

论文摘要

由于其非侵入性和非辐射性质以及其低成本,超声(US)成像被广泛用于医疗应用中。典型的B模式US图像的分辨率有限,对比度和弱物理解释。开发了反美国的方法来基于线性声学模型重建介质的启发速度(SOS)。但是,美国医学中的波传播受非线性声学的控制,这引入了线性模型中忽略的更复杂的行为。在这项工作中,我们提出了一种非线性波形反转(NWI)的定量US方法,该方法认为非线性声学模型同时重建了多种材料属性,包括介质的SOS,密度,衰减和非线性参数。因此,我们通过考虑非线性培养基和其他物理参数来扩展当前的反向美国方法,例如完整波形反转(FWI)算法。我们通过复发性神经网络代表非线性声学模型,这使我们能够应用从深度学习工具箱借用的高级优化算法并与FWI方法相比实现更有效的重建。我们评估了我们在核内数据上的方法的性能,并表明忽视非线性效应可能会导致重建的重大降级,从而将NWI的方式铺平了临床应用。

Due to its non-invasive and non-radiating nature, along with its low cost, ultrasound (US) imaging is widely used in medical applications. Typical B-mode US images have limited resolution and contrast and weak physical interpretation. Inverse US methods were developed to reconstruct the media's speed-of-sound (SoS) based on a linear acoustic model. However, the wave propagation in medical US is governed by nonlinear acoustics, which introduces more complex behaviors neglected in the linear model. In this work we propose a nonlinear waveform inversion (NWI) approach for quantitative US, that considers a nonlinear acoustics model to simultaneously reconstruct multiple material properties, including the medium's SoS, density, attenuation, and nonlinearity parameter. We thus broaden current inverse US approaches, such as the full waveform inversion (FWI) algorithm, by considering nonlinear media, and additional physical parameters. We represent the nonlinear acoustic model by means of a recurrent neural network, which enables us to apply advanced optimization algorithms borrowed from the deep learning toolbox and achieve more efficient reconstructions compared to the FWI method. We evaluate the performance of our approach on in-silico data and show that neglecting nonlinear effects may result in substantial degradation in the reconstruction, paving the way of NWI into clinical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源