论文标题

相对论运动总是降级量子渔民信息吗?

Does relativistic motion always degrade quantum Fisher information?

论文作者

Liu, Xiaobao, Jing, Jiliang, Tian, Zehua, Yao, Weiping

论文摘要

我们研究了以两级原子为特征的最终估计精度,该精度为量子Fisher信息,作为检测器,该原子与Minkowski真空中的无质量标量场耦合。已经表明,对于以恒定速度移动的惯性检测器,其量子Fisher信息完全不受速度的影响,但是,由于原子与田间之间的相互作用引起的逆转性,它仍然会随着时间的流逝而衰减。此外,对于沿空间直线移动的均匀加速检测器($ W = 0 $),加速运动将在估计状态参数中减少量子Fisher信息。但是,当探测器的轨迹是通过线性加速运动和四个速度$ w = dy/dτ$组成的组合而产生的,我们发现与先前的结果完全不同的是,对于非相关的情况$(w \ ll1)$而言,加速可能会抑制量子渔夫的信息,同时可以抑制量子的范围,同时抑制量子的范围。提高参数估计的精度。此外,对于超相关的速度$ $(w \ rightarrow \ infty)$的情况,尽管检测器仍然与环境相互作用,但它的行为好像是一个封闭的系统,因为与速度相关性相关性校正是与速度相关的相对性校正的结果,并且在这种情况下,量子渔民在这种情况下可能会避免外部环境的效果,从而使外部环境的效果和动作相关性。

We investigate the ultimate estimation precision, characterized by the quantum Fisher information, of a two-level atom as a detector which is coupled to massless scalar field in the Minkowski vacuum. It has been shown that for an inertial detector moving with a constant velocity, its quantum Fisher information is completely unaffected by the velocity, however, it still decays over time due to the decoherence caused by the interaction between the atom and the field. In addition, for a uniformly accelerated detector ($w=0$) moving along spatially straight line, the accelerated motion will reduce the quantum Fisher information in the estimation of state parameters. However, when the detector trajectory is generated by a combination of the linear accelerated motion and a component of the four-velocity $w=dy/dτ$, we find quite unlike the previous results that, for the non-relativistic case $(w\ll1)$, the acceleration could degrade the quantum Fisher information, while the four-velocity component will suppress the degradation of the quantum Fisher information, and thus could enhance the precision of parameters estimation. Furthermore, in the case for ultra-relativistic velocities $(w\rightarrow\infty)$, although the detector still interacts with the environment, it behaves as if it were a closed system as a consequence of relativity correction associated to the velocity, and the quantum Fisher information in this case can be shield from the effect of the external environment, and thus from the relativistic motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源