论文标题

Riemannian歧管的副定型子集上的弱测量学

Weak geodesics on prox-regular subsets of Riemannian manifolds

论文作者

Ferrera, Juan, Pouryayevali, Mohamad R., Radmanesh, Hajar

论文摘要

我们将弱测量学对侵入歧管的较弱的测量曲线定义为连续曲线,具有一些较弱的规律性。然后,我们获得了投影图的合适LIPSCHITZ常数,我们表征了带有分配端点的较弱的测量集,作为能量功能的粘度临界点。

We give a definition of weak geodesics on prox-regular subsets of Riemannian manifolds as continuous curves with some weak regularities. Then obtaining a suitable Lipschitz constant of the projection map, we characterize weak geodesics on a prox-regular set with assigned end points as viscosity critical points of the energy functional.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源