论文标题
Riemannian歧管的副定型子集上的弱测量学
Weak geodesics on prox-regular subsets of Riemannian manifolds
论文作者
论文摘要
我们将弱测量学对侵入歧管的较弱的测量曲线定义为连续曲线,具有一些较弱的规律性。然后,我们获得了投影图的合适LIPSCHITZ常数,我们表征了带有分配端点的较弱的测量集,作为能量功能的粘度临界点。
We give a definition of weak geodesics on prox-regular subsets of Riemannian manifolds as continuous curves with some weak regularities. Then obtaining a suitable Lipschitz constant of the projection map, we characterize weak geodesics on a prox-regular set with assigned end points as viscosity critical points of the energy functional.