论文标题

用代码mancha3d对太阳大气中的热传导进行建模

Modeling the thermal conduction in the solar atmosphere with the code MANCHA3D

论文作者

Navarro, Anamaría, Khomenko, E., Modestov, M., Vitas, N.

论文摘要

导热率是太阳电晕中传热的重要机制之一。在强磁化等离子体的极限下,通常由Spitzer的表达模型,其中热通量与磁场对齐。本文介绍了将热传导的实施到代码mancha3d中,目的是将单流体MHD模拟从上部对流区扩展到太阳能电晕。实施了两种不同的用于热传导模型的方案:(1)一种标准方案,其中将抛物线项添加到能量方程中,以及(2)解决双曲热通量方程的方案。第一个方案限制了由于抛物线术语的明确集成而导致的时间步,这使得模拟在计算上昂贵。第二个方案通过人为地将热传导速度限制为计算值的值来解决时间步长的局限性。两种方案的验证均以一个,两个和三个空间维度进行标准测试进行。此外,当热通量的表达取决于等离子体的碰撞频率与磁场强度的比率,我们以最通用的形式实施了由Braginskii(1965)得出的热通量模型,而热通量的表达取决于碰撞的比率与磁场强度的比率。此外,我们的实施考虑了并行,垂直和横向的热传导,并分别提供离子和电子的贡献。该模型还可以在低或无磁场的区域对场对准电导率和各向同性电导率之间平稳过渡。最后,我们使用太阳大气的逼真值提出了二维测试,以进行热传导,在该测试中,我们证明了实施的两个方案的鲁棒性。

Thermal conductivity is one of the important mechanisms of heat transfer in the solar corona. In the limit of strongly magnetized plasma, it is typically modeled by Spitzer's expression where the heat flux is aligned with the magnetic field. This paper describes the implementation of the heat conduction into the code MANCHA3D with an aim of extending single-fluid MHD simulations from the upper convection zone into the solar corona. Two different schemes to model heat conduction are implemented: (1) a standard scheme where a parabolic term is added to the energy equation, and (2) a scheme where the hyperbolic heat flux equation is solved. The first scheme limits the time step due to the explicit integration of a parabolic term, which makes the simulations computationally expensive. The second scheme solves the limitations on the time step by artificially limiting the heat conduction speed to computationally manageable values. The validation of both schemes is carried out with standard tests in one, two, and three spatial dimensions. Furthermore, we implement the model for heat flux derived by Braginskii (1965) in its most general form, when the expression for the heat flux depends on the ratio of the collisional to cyclotron frequencies of the plasma, and, therefore on the magnetic field strength. Additionally, our implementation takes into account the heat conduction in parallel, perpendicular, and transverse directions, and provides the contributions from ions and electrons separately. The model also transitions smoothly between field-aligned conductivity and isotropic conductivity for regions with a low or null magnetic field. Finally, we present a two-dimensional test for heat conduction using realistic values of the solar atmosphere where we prove the robustness of the two schemes implemented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源