论文标题
使用情节记忆产生深入学习的解释
Generating Explanations from Deep Reinforcement Learning Using Episodic Memory
论文作者
论文摘要
深度强化学习(RL)涉及使用深神经网络(DNN)来做出顺序决策,以最大程度地提高奖励。对于许多任务,由深度RL政策产生的一系列动作顺序对于人类来说可能是漫长而难以理解的。人类解释的一个关键组成部分是选择性,仅叙述关键决定和原因。使深层RL代理具有这种能力,这将使他们的政策从人的角度更容易理解,并产生一套简洁的指示,以帮助学习未来的代理商。为此,我们使用具有情节内存系统的深度RL代理来识别和叙述策略执行期间的关键决策。我们表明,这些决策形成了一个简短的可读解释,也可以用来以算法独立的方式加快对天真的深度RL代理的学习。
Deep Reinforcement Learning (RL) involves the use of Deep Neural Networks (DNNs) to make sequential decisions in order to maximize reward. For many tasks the resulting sequence of actions produced by a Deep RL policy can be long and difficult to understand for humans. A crucial component of human explanations is selectivity, whereby only key decisions and causes are recounted. Imbuing Deep RL agents with such an ability would make their resulting policies easier to understand from a human perspective and generate a concise set of instructions to aid the learning of future agents. To this end we use a Deep RL agent with an episodic memory system to identify and recount key decisions during policy execution. We show that these decisions form a short, human readable explanation that can also be used to speed up the learning of naive Deep RL agents in an algorithm-independent manner.