论文标题

$ sp(2n)$ yang-mills理论在晶格上:比例设置和拓扑

$Sp(2N)$ Yang-Mills theories on the lattice: scale setting and topology

论文作者

Bennett, Ed, Hong, Deog Ki, Lee, Jong-Wan, Lin, C. -J. David, Lucini, Biagio, Piai, Maurizio, Vadacchino, Davide

论文摘要

我们使用$ sp(n_c)$ gauge组研究杨 - 米尔斯晶格理论,$ n_c = 2n $,$ n = 1,\,\ cdots,\,\,4 $。我们表明,如果我们将$ sp(n_c)$ group的二次casimir $ c_2(f)$ casimir $ c_2(f)$ casimir $ c_2(f)划分在威尔逊流中的重新归一化的耦合,则结果数量在所有$ n_c $中显示出良好的协议,而在$ n_c $中显示了一个良好的协议。我们将Wilson流的缩放版本用作规模设定过程,计算$ sp(N_C)$理论的拓扑敏感性,并将结果推送到每个$ N_C $的连续性限制。

We study Yang-Mills lattice theories with $Sp(N_c)$ gauge group, with $N_c=2N$, for $N=1,\,\cdots,\,4$. We show that if we divide the renormalised couplings appearing in the Wilson flow by the quadratic Casimir $C_2(F)$ of the $Sp(N_c)$ group, then the resulting quantities display a good agreement among all values of $N_c$ considered, over a finite interval in flow time. We use this scaled version of the Wilson flow as a scale-setting procedure, compute the topological susceptibility of the $Sp(N_c)$ theories, and extrapolate the results to the continuum limit for each $N_c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源