论文标题

通过可区分体系结构的增量学习和忘记搜索

Incremental Learning with Differentiable Architecture and Forgetting Search

论文作者

Smith, James Seale, Seymour, Zachary, Chiu, Han-Pang

论文摘要

随着在培训机器学习模型上取得的进展,分类任务(即增量学习),下一步是将这一进度转化为行业期望。增量学习缺少的一种技术是通过神经体系结构搜索(NAS)自动架构设计。在本文中,我们表明利用NAS进行增量学习会为分类任务带来强大的绩效提高。具体来说,我们贡献以下内容:首先,我们基于可区分的体系结构搜索(DARTS)和最先进的增量学习策略创建了强大的基线方法,以优于许多经过相似大小的流行体系结构培训的现有策略;其次,我们将架构搜索的想法扩展到正规化架构遗忘,从而超越了我们提出的基线的性能。我们在RF信号和图像分类任务上评估我们的方法,并证明我们可以比最新方法达到10%的性能提高。最重要的是,我们的贡献使从连续分布中学习对现实世界应用数据的数据,该数据的复杂性是未知的,或者探讨的模式较少(例如RF信号分类)。

As progress is made on training machine learning models on incrementally expanding classification tasks (i.e., incremental learning), a next step is to translate this progress to industry expectations. One technique missing from incremental learning is automatic architecture design via Neural Architecture Search (NAS). In this paper, we show that leveraging NAS for incremental learning results in strong performance gains for classification tasks. Specifically, we contribute the following: first, we create a strong baseline approach for incremental learning based on Differentiable Architecture Search (DARTS) and state-of-the-art incremental learning strategies, outperforming many existing strategies trained with similar-sized popular architectures; second, we extend the idea of architecture search to regularize architecture forgetting, boosting performance past our proposed baseline. We evaluate our method on both RF signal and image classification tasks, and demonstrate we can achieve up to a 10% performance increase over state-of-the-art methods. Most importantly, our contribution enables learning from continuous distributions on real-world application data for which the complexity of the data distribution is unknown, or the modality less explored (such as RF signal classification).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源