论文标题

基于离散征轴 - 分析的框架,用于预测的热启动算法

Discrete-Convex-Analysis-Based Framework for Warm-Starting Algorithms with Predictions

论文作者

Sakaue, Shinsaku, Oki, Taihei

论文摘要

通过学习的预测增强算法是超越最坏情况界限的一种有希望的方法。 Dinitz,IM,Lavastida,Moseley和Vassilvitskii〜(2021)已经证明,学习的双重解决方案的温暖开端可以改善匈牙利方法的时间复杂性,以加重完美的双方匹配。我们通过\ textIt {iNCETE cONVEX Analysis}(DCA)以原则性的方式扩展并改善了它们的框架,这是一个离散的凸分析类似物。我们通过将基于DCA的框架应用于加权的完美两分匹配,加权矩阵交叉点以及用于计算机视觉的离散能量最小化,从而展示了基于DCA的框架的实用性。我们基于DCA的框架产生的时间复杂性界限取决于$ \ ell_ \ indy $ distance从预测的解决方案到最佳解决方案,相对于先前的$ \ ell_1 $ distance依赖性界限具有两个优点:时间复杂性范围较小,并且对预测的学习较小。我们还从DCA的角度讨论了是学习原始解决方案还是双重解决方案。

Augmenting algorithms with learned predictions is a promising approach for going beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii~(2021) have demonstrated that a warm start with learned dual solutions can improve the time complexity of the Hungarian method for weighted perfect bipartite matching. We extend and improve their framework in a principled manner via \textit{discrete convex analysis} (DCA), a discrete analog of convex analysis. We show the usefulness of our DCA-based framework by applying it to weighted perfect bipartite matching, weighted matroid intersection, and discrete energy minimization for computer vision. Our DCA-based framework yields time complexity bounds that depend on the $\ell_\infty$-distance from a predicted solution to an optimal solution, which has two advantages relative to the previous $\ell_1$-distance-dependent bounds: time complexity bounds are smaller, and learning of predictions is more sample efficient. We also discuss whether to learn primal or dual solutions from the DCA perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源