论文标题
碰撞电离和重组对染色体的聚合不稳定性的影响部分电离等离子体
Collisional ionisation and recombination effects on coalescence instability in chromospheric partially ionised plasmas
论文作者
论文摘要
血浆介导的快速磁重新连接在驱动爆炸性动力学和加热方面起着基本作用,但是关于它在太阳能球层的部分离子化等离子体(PIP)中的发展相对较少。部分电离可能会在很大程度上改变聚结的动力学,从而促进快速重新连接并通过浆液相互作用形成湍流重新连接电流,但仍不清楚PIP效应在多大程度上影响这一过程。我们通过两流体模型的2.5D模拟研究了碰撞电离和重组在PIP中浆液聚结合的作用。目的是了解这些两流体耦合过程是否在加速重新连接中起作用。我们发现,在一般情况下,电离重组过程降低了合并的速度。与G. Murtas,A。Hillier\&B。Snow的先前模型不同,等离子体的物理学28,032901(2021)仅包括热碰撞,电离和重组使电流稳定和抑制非线性动态并抑制非线性动力学,并在有限的情况下会导致湍流的繁殖范围,即使在整体上均呈现繁殖,甚至在整个系统中都会导致整体损失。因此,合并时间尺度对电离重组过程非常敏感。但是,PIP中的重新连接仍然比具有相同大量密度的完全离子的等离子体环境要快:PIP重新连接率($ M _ {_ {_ {\ propatatorName {irip}}} = 0.057 $)增加了$ \ sim 1.2 $的因子($ M _ {_ {\ operatorName {mhd}}}} = 0.047 $)。
Plasmoid-mediated fast magnetic reconnection plays a fundamental role in driving explosive dynamics and heating, but relatively little is known about how it develops in partially ionised plasmas (PIP) of the solar chromosphere. Partial ionisation might largely alter the dynamics of the coalescence instability, which promotes fast reconnection and forms a turbulent reconnecting current sheet through plasmoid interaction, but it is still unclear to what extent PIP effects influence this process. We investigate the role of collisional ionisation and recombination in the development of plasmoid coalescence in PIP through 2.5D simulations of a two-fluid model. The aim is to understand whether these two-fluid coupling processes play a role in accelerating reconnection. We find that in general ionisation-recombination process slow down the coalescence. Unlike the previous models in G. Murtas, A. Hillier \& B. Snow, Physics of Plasmas 28, 032901 (2021) that included thermal collisions only, ionisation and recombination stabilise current sheets and suppress non-linear dynamics, with turbulent reconnection occurring in limited cases: bursts of ionisation lead to the formation of thicker current sheets, even when radiative losses are included to cool the system. Therefore, the coalescence time scale is very sensitive to ionisation-recombination processes. However, reconnection in PIP is still faster than in a fully ionised plasma environment having the same bulk density: the PIP reconnection rate ($M_{_{\operatorname{IRIP}}} = 0.057$) increases by a factor of $\sim 1.2$ with respect to the MHD reconnection rate ($M_{_{\operatorname{MHD}}} = 0.047$).