论文标题

上传:一个用于积极学习研究和发展的Python库

PyRelationAL: a python library for active learning research and development

论文作者

Scherer, Paul, Pouplin, Alison, Del Vecchio, Alice, S, Suraj M, Bolton, Oliver, Soman, Jyothish, Taylor-King, Jake P., Edwards, Lindsay, Gaudelet, Thomas

论文摘要

主动学习(AL)是ML的子场,重点介绍了通过策略性查询对特定任务最有用的新数据点来开发迭代和经济上获取数据的子场。在这里,我们介绍了AL研究的开源库中兴趣。我们描述了一个基于两步设计方法的模块化工具包,该方法用于构成适用于单一积极和批处理策略的基于池的主动学习策略。该框架允许在一致的编程模型和抽象下对许多现有和新颖策略进行数学和实际规范。此外,我们合并了适用于它们的数据集和主动学习任务,以简化比较评估和基准测试,以及本库中包含的数据集的初始基准。该工具包与现有的ML框架兼容。使用现代软件工程实践(具有包容性贡献者的行为守则)来促进长期图书馆的质量和利用来维持上传。 Pyrealational可在PYPI和https://github.com/RelelationRx/pyrelational上获得允许的Apache许可证。

Active learning (AL) is a sub-field of ML focused on the development of methods to iteratively and economically acquire data by strategically querying new data points that are the most useful for a particular task. Here, we introduce PyRelationAL, an open source library for AL research. We describe a modular toolkit based around a two step design methodology for composing pool-based active learning strategies applicable to both single-acquisition and batch-acquisition strategies. This framework allows for the mathematical and practical specification of a broad number of existing and novel strategies under a consistent programming model and abstraction. Furthermore, we incorporate datasets and active learning tasks applicable to them to simplify comparative evaluation and benchmarking, along with an initial group of benchmarks across datasets included in this library. The toolkit is compatible with existing ML frameworks. PyRelationAL is maintained using modern software engineering practices -- with an inclusive contributor code of conduct -- to promote long term library quality and utilisation. PyRelationAL is available under a permissive Apache licence on PyPi and at https://github.com/RelationRx/pyrelational.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源