论文标题

hölder的稳定解决方案的稳定性半线性椭圆方程式最多$ \ mathbf {\ mathbb {r}^9} $:完整的定量证明

Hölder regularity of stable solutions to semilinear elliptic equations up to $\mathbf{\mathbb{R}^9}$: full quantitative proofs

论文作者

Cabre, Xavier

论文摘要

本文涉及[Cabré,Figalli,Ros-Oton和Serra,Acta Math中获得的结果。 224(2020)],它在最佳尺寸$ n \ leq 9 $的最佳范围内建立了稳定解决方案的Hölder规律性。出于说明性目的,我们提供了所有结果的独立证明。它们仅涉及基本分析工具,并且旨在为PDE专家以外的更广泛的数学受众访问。 2020年文章中的两个结果依赖于紧凑性论点。相反,我们在这里介绍了最近的论文[Cabré,出现在Amer中的定量证明。 J. Math,Arxiv:2211.13033]。他们允许量化Hölder规律性指数,并显着简化边界规律性的处理。 我们还对相关方程式的类似进度和开放问题发表评论。

This article concerns the results obtained in [Cabré, Figalli, Ros-Oton, and Serra, Acta Math. 224 (2020)], which established the Hölder regularity of stable solutions to semilinear elliptic equations in the optimal range of dimensions $n\leq 9$. For expository purposes, we provide self-contained proofs of all results. They involve only basic Analysis tools and are intended to be accessible to a broader mathematical audience beyond PDE specialists. Two of the results in the 2020 article relied on compactness arguments. Here we present, instead, quantitative proofs from the more recent paper [Cabré, to appear in Amer. J. Math, arXiv:2211.13033]. They allow to quantify the Hölder regularity exponent and simplify significantly the treatment of boundary regularity. We also comment on similar progress and open problems for related equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源