论文标题

由狄拉克材料中的自旋磁矩电流驱动的自旋大厅效应

Spin Hall effect driven by the spin magnetic moment current in Dirac materials

论文作者

Chi, Zhendong, Qu, Guanxiong, Lau, Yong-Chang, Kawaguchi, Masashi, Fujimoto, Junji, Takanashi, Koki, Ogata, Masao, Hayashi, Masamitsu

论文摘要

使用半经典分析和Kubo公式研究了Dirac Hamiltonian系统的自旋大厅效应。在此系统中,自旋霍尔电导率取决于自旋电流的定义。当旋转电流定义为自旋角动量流动时,自旋电导率的所有组件都消失了。相比之下,当自旋电流由自旋磁矩流动时,自旋霍尔电导率的非对角线分量是非零的,并且以载体速度(以及有效的$ g $ -FACTOR)缩放。我们得出电导率,载体迁移率和自旋霍尔电导率的分析公式,以与实验相比。在实验中,我们将BI用作模型系统,可以以Dirac Hamiltonian为特征。 TE和SN分别掺入BI中以改变电子和孔浓度。我们发现旋转厅电导率($σ_\ Mathrm {sh} $)在狄拉克点附近最大值,并且随着载体密度的增加($ n $)降低。 $σ_\ Mathrm {Sh} $的符号是相同的,无论多数载体类型如何。与$σ_\ Mathrm {SH}/N $成比例的自旋大厅移动性随着载流子移动性的增加而增加,缩放系数为$ \ sim $ 1.4。这些功能可以使用派生的分析公式进行定量考虑。结果表明,巨大的自旋磁矩具有有效的$ g $因子接近100,这是BI中的旋转大厅效应的原因。

The spin Hall effect of a Dirac Hamiltonian system is studied using semiclassical analyses and the Kubo formula. In this system, the spin Hall conductivity is dependent on the definition of spin current. All components of the spin Hall conductivity vanish when spin current is defined as the flow of spin angular momentum. In contrast, the off-diagonal components of the spin Hall conductivity are non-zero and scale with the carrier velocity (and the effective $g$-factor) when spin current consists of the flow of spin magnetic moment. We derive analytical formula of the conductivity, carrier mobility and the spin Hall conductivity to compare with experiments. In experiments, we use Bi as a model system that can be characterized by the Dirac Hamiltonian. Te and Sn are doped into Bi to vary the electron and hole concentration, respectively. We find the spin Hall conductivity ($σ_\mathrm{SH}$) takes a maximum near the Dirac point and decreases with increasing carrier density ($n$). The sign of $σ_\mathrm{SH}$ is the same regardless of the majority carrier type. The spin Hall mobility, proportional to $σ_\mathrm{SH}/n$, increases with increasing carrier mobility with a scaling coefficient of $\sim$1.4. These features can be accounted for quantitatively using the derived analytical formula. The results demonstrate that the giant spin magnetic moment, with an effective $g$-factor that approaches 100, is responsible for the spin Hall effect in Bi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源