论文标题

在2曲面上的可整合磁性流动

Integrable magnetic geodesic flows on 2-surfaces

论文作者

Agapov, Sergei, Potashnikov, Alexey, Shubin, Vladislav

论文摘要

我们研究了具有额外的第一积分的2个曲面上的磁性测量流,该集成量与固定能级无关的哈密顿量。考虑以下两种情况:当Momenta积分中存在二次的情况时,以及与线性分子和分母的Momenta积分中有理理性的情况。在这两种情况下,都出现了某些半汉密尔顿PDES系统。在本文中,我们对这些系统构建精确的解决方案(通常是本地的):在第一种情况下,通过广义Hodograph方法,在第二种情况下通过Legendre Transformation和变量分离方法。

We study the magnetic geodesic flows on 2-surfaces having an additional first integral which is independent of the Hamiltonian at a fixed energy level. The following two cases are considered: when there exists a quadratic in momenta integral, and also the case of a rational in momenta integral with a linear numerator and denominator. In both cases certain semi-Hamiltonian systems of PDEs appear. In this paper we construct exact solutions (generally speaking, local ones) to these systems: in the first case via the generalized hodograph method, in the second case via the Legendre transformation and the method of separation of variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源