论文标题

从示例和演示中学习确定性有限自动机分解

Learning Deterministic Finite Automata Decompositions from Examples and Demonstrations

论文作者

Lauffer, Niklas, Yalcinkaya, Beyazit, Vazquez-Chanlatte, Marcell, Shah, Ameesh, Seshia, Sanjit A.

论文摘要

从标记的示例中识别确定性有限自动机(DFA)是文献中有充分研究的问题。但是,先前的工作着重于整体DFA的识别。尽管整体式DFA提供了对系统行为的准确描述,但它们缺乏简单性和解释性。此外,他们无法捕获系统所实现的子任务,并从整体任务的固有分解中引入了归纳偏见。在本文中,我们提出了一种从标记的示例中学习DFA的连词的算法。我们的方法将现有的基于SAT的方法扩展到系统地列举帕累托最佳候选解决方案。我们通过将方法与一种从演示中学习DFA的最新算法相结合来强调我们的方法的实用性。我们的实验表明,该算法学习由标记的示例实现的子任务,并且在感兴趣的域中是可扩展的。

The identification of a deterministic finite automaton (DFA) from labeled examples is a well-studied problem in the literature; however, prior work focuses on the identification of monolithic DFAs. Although monolithic DFAs provide accurate descriptions of systems' behavior, they lack simplicity and interpretability; moreover, they fail to capture sub-tasks realized by the system and introduce inductive biases away from the inherent decomposition of the overall task. In this paper, we present an algorithm for learning conjunctions of DFAs from labeled examples. Our approach extends an existing SAT-based method to systematically enumerate Pareto-optimal candidate solutions. We highlight the utility of our approach by integrating it with a state-of-the-art algorithm for learning DFAs from demonstrations. Our experiments show that the algorithm learns sub-tasks realized by the labeled examples, and it is scalable in the domains of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源