论文标题

从机器学习元动力学的晶体相变尺寸依赖性成核

Size-Dependent Nucleation in Crystal Phase Transition from Machine Learning Metadynamics

论文作者

Santos-Florez, Pedro A., Yanxon, Howard, Kang, Byungkyun, Yao, Yansun, Zhu, Qiang

论文摘要

在这项工作中,我们提出了一个有效的框架,该框架结合了机器学习潜力(MLP)和元动力学,以探索用于研究固体相变的多维自由能表面。基于光谱描述符和神经网络回归,我们开发了一种计算可扩展的MLP模型,以保证对两个相共存的能量表面进行准确的插值。将框架应用于具有不同模型大小的50 GPA下GAN的B4-B1相变的元动力学模拟,我们观察到相变机制从集体模式到成核和生长的顺序变化。当系统大小在128 000个原子上或低于128 000个原子时,成核和生长似乎遵循首选的方向。在较大尺寸的情况下,成核倾向于同时发生在多个位点,并通过临界大小而成长为微观结构。观察到的原子机制的变化表现出具有较大系统大小的统计抽样的重要性。在极端条件下,MLP和元动力学的组合可能适用于广泛的诱导重建相变。

In this work, we present an efficient framework that combines machine learning potential (MLP) and metadynamics to explore multi-dimensional free energy surfaces for investigating solid-solid phase transition. Based on the spectral descriptors and neural networks regression, we have developed a computationally scalable MLP model to warrant an accurate interpolation of the energy surface where two phases coexist. Applying the framework to the metadynamics simulation of B4-B1 phase transition of GaN under 50 GPa with different model sizes, we observe the sequential change of phase transition mechanism from collective modes to nucleation and growths. When the system size is at or below 128 000 atoms, the nucleation and growth appear to follow a preferred direction. At larger sizes, the nucleation tends to occur at multiple sites simultaneously and grow to microstructures by passing the critical size. The observed change of atomistic mechanism manifests the importance of statistical sampling with large system size. The combination of MLP and metadynamics is likely to be applicable to a broad class of induced reconstructive phase transitions at extreme conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源