论文标题
四分之一的汉密尔顿人和高级汉密尔顿人在接下来的命令下,用于仿射$ \ mathfrak {sl} _2 $ gaudin模型
Quartic Hamiltonians, and higher Hamiltonians at next-to-leading order, for the affine $\mathfrak{sl}_2$ Gaudin model
论文作者
论文摘要
在这项工作中,我们将使用一般过程来为Aggine $ \ Mathfrak {SL} _2 $ Gaudin型号构建更高的本地哈密顿量。我们专注于第一个非平凡的例子,即四分之一的汉密尔顿人。我们通过直接计算表明,四分之一的汉密尔顿人与自身以及定义模型的二次汉密尔顿人的通勤。我们继续介绍该模型的某些近临界半古典限制。在这个限制下,我们能够写下高级哈密顿人的完整层次结构,并证明他们上下班。
In this work we will use a general procedure to construct higher local Hamiltonians for the affine $\mathfrak{sl}_2$ Gaudin model. We focus on the first non-trivial example, the quartic Hamiltonians. We show by direct calculation that the quartic Hamiltonians commute amongst themselves and with the quadratic Hamiltonians which define the model. We go on to introduce a certain next-to-leading-order semi-classical limit of the model. In this limit, we are able to write down the full hierarchy of higher local Hamiltonians and prove that they commute.