论文标题

VQ-AR:矢量量化自回归概率时间序列预测

VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series Forecasting

论文作者

Rasul, Kashif, Park, Young-Jin, Ramström, Max Nihlén, Kim, Kyung-Min

论文摘要

时间序列模型旨在准确预测过去的未来,在这种情况下,预测用于重要的下游任务,例如业务决策。在实践中,基于深度学习的时间序列模型有多种形式,但是在高水平上,学习了过去的一些连续表示,并将其用于输出点或概率的预测。在本文中,我们介绍了一种新颖的自回归体系结构VQ-AR,而是学习用于预测未来的一组\ emph {ixcete}集合。与其他竞争深度学习模型的广泛经验比较表明,令人惊讶的是,这种离散的一组表示形式在各种时间序列数据集中为最先进或同等的结果提供了。我们还强调了这种方法的缺点,探索了其零拍的概括能力,并介绍了关于表示数量的消融研究。该方法的完整源代码将在出版时获得,希望研究人员能够进一步调查时间序列域的这种重要但被忽视的归纳偏见。

Time series models aim for accurate predictions of the future given the past, where the forecasts are used for important downstream tasks like business decision making. In practice, deep learning based time series models come in many forms, but at a high level learn some continuous representation of the past and use it to output point or probabilistic forecasts. In this paper, we introduce a novel autoregressive architecture, VQ-AR, which instead learns a \emph{discrete} set of representations that are used to predict the future. Extensive empirical comparison with other competitive deep learning models shows that surprisingly such a discrete set of representations gives state-of-the-art or equivalent results on a wide variety of time series datasets. We also highlight the shortcomings of this approach, explore its zero-shot generalization capabilities, and present an ablation study on the number of representations. The full source code of the method will be available at the time of publication with the hope that researchers can further investigate this important but overlooked inductive bias for the time series domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源