论文标题
非专业马尔可夫操作员和随机固定点问题的随机函数迭代
Nonexpansive Markov Operators and Random Function Iterations for Stochastic Fixed Point Problems
论文作者
论文摘要
我们研究了随机函数迭代的收敛性,以查找相应的马尔可夫操作员的不变度量。我们称找到这种不变的量度测量随机固定点问题的问题。这概括了研究随机可行性问题的早期工作,即找到概率1的固定点的点。当不存在这样的点时,随机可行性问题称为不一致,但仍在某些假设下,更通用的随机固定点问题具有解决方案,并且随机函数迭代会收敛到相应的Markov运算符的不变性度量。我们展示了如何利用确定性固定点理论中的共同结构,以建立马尔可夫链分布中不变的度量和收敛性的存在。该框架专门针对当前兴趣的许多应用程序,包括用于大规模分布式计算的随机算法以及具有计算误差的确定性迭代过程。这项研究中开发的理论为描述简单计算方法的收敛提供了扎实的基础,而无需假设无限精确算术或消失的计算误差。
We study the convergence of random function iterations for finding an invariant measure of the corresponding Markov operator. We call the problem of finding such an invariant measure the stochastic fixed point problem. This generalizes earlier work studying the stochastic feasibility problem, namely, to find points that are, with probability 1, fixed points of the random functions. When no such points exist, the stochastic feasibility problem is called inconsistent, but still under certain assumptions, the more general stochastic fixed point problem has a solution and the random function iterations converge to an invariant measure for the corresponding Markov operator. We show how common structures in deterministic fixed point theory can be exploited to establish existence of invariant measures and convergence in distribution of the Markov chain. This framework specializes to many applications of current interest including, for instance, stochastic algorithms for large-scale distributed computation, and deterministic iterative procedures with computational error. The theory developed in this study provides a solid basis for describing the convergence of simple computational methods without the assumption of infinite precision arithmetic or vanishing computational errors.