论文标题
部分可观测时空混沌系统的无模型预测
Gradient Gibbs measures of an SOS model with alternating magnetism on Cayley trees
论文作者
论文摘要
这项工作专门用于SOS模型的渐变Gibbs度量(GGM),该模型具有可计数的旋转值的$ \ Mathbb z $,并且在Cayley树上具有交替的磁性。该模型由最近的邻里梯度相互作用电位定义。使用基于边界法方程的Külske-Schriever参数,我们提供了几个$ Q $ -Height-periodic翻译不变的GGM,$ q = 2,3,4 $。
The work is devoted to gradient Gibbs measures (GGMs) of a SOS model with countable set $\mathbb Z$ of spin values and having alternating magnetism on Cayley trees. This model is defined by a nearest-neighbor gradient interaction potential. Using Külske-Schriever argument, based on boundary law equations, we give several $q$-height-periodic translations invariant GGMs for $q=2,3,4$.