论文标题
非热矩阵的定量可逆性
Quantitative invertibility of non-Hermitian random matrices
论文作者
论文摘要
估计随机平方矩阵的最小奇异值的问题对于与矩阵计算和光谱分布的分析有关。在这项调查中,我们考虑了在非武术环境中定量可逆性研究中的最新发展,并回顾了这一研究的某些应用。
The problem of estimating the smallest singular value of random square matrices is important in connection with matrix computations and analysis of the spectral distribution. In this survey, we consider recent developments in the study of quantitative invertibility in the non-Hermitian setting, and review some applications of this line of research.