论文标题

在复杂的多种情况下,随着时间的流逝估算反事实治疗结果

Estimating counterfactual treatment outcomes over time in complex multiagent scenarios

论文作者

Fujii, Keisuke, Takeuchi, Koh, Kuribayashi, Atsushi, Takeishi, Naoya, Kawahara, Yoshinobu, Takeda, Kazuya

论文摘要

评估多种系统中的干预措施,例如,当人类应干预自动驾驶系统,以及当玩家应传递给队友以进行良好射击时,在各种工程和科学领域都充满挑战。使用反事实长期预测来估算单个治疗效果(ITE)是实用的,可以评估这种干预措施。但是,大多数常规框架并未考虑多种关系和协变量反事实预测的随时间变化的复杂结构。这可能会导致对ITE和解释难度的错误评估。在这里,我们提出了一个可解释的,反事实的反复网络,以估计干预措施的效果。我们的模型利用图形复发性神经网络和基于理论的计算以及基于域知识的ITE估计框架的域知识,基于对多基因协变量和结果的长期预测,这可以证实干预措施有效的情况。在与时变混杂因子的自动化车辆和生物学剂的模拟模型上,我们表明我们的方法在反事实协变量和最有效的治疗时机中达到了较低的估计误差。此外,使用真实的篮球数据,我们的方法执行了现实的反事实预测,并评估了射击场景中的反事实传球。

Evaluation of intervention in a multiagent system, e.g., when humans should intervene in autonomous driving systems and when a player should pass to teammates for a good shot, is challenging in various engineering and scientific fields. Estimating the individual treatment effect (ITE) using counterfactual long-term prediction is practical to evaluate such interventions. However, most of the conventional frameworks did not consider the time-varying complex structure of multiagent relationships and covariate counterfactual prediction. This may lead to erroneous assessments of ITE and difficulty in interpretation. Here we propose an interpretable, counterfactual recurrent network in multiagent systems to estimate the effect of the intervention. Our model leverages graph variational recurrent neural networks and theory-based computation with domain knowledge for the ITE estimation framework based on long-term prediction of multiagent covariates and outcomes, which can confirm the circumstances under which the intervention is effective. On simulated models of an automated vehicle and biological agents with time-varying confounders, we show that our methods achieved lower estimation errors in counterfactual covariates and the most effective treatment timing than the baselines. Furthermore, using real basketball data, our methods performed realistic counterfactual predictions and evaluated the counterfactual passes in shot scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源