论文标题
Darkslam:在弱光条件下可靠操作的GAN辅助视觉猛击
DarkSLAM: GAN-assisted Visual SLAM for Reliable Operation in Low-light Conditions
论文作者
论文摘要
现有的视觉大满贯方法对照明很敏感,由于提取器的限制,其精确度大大落在黑暗条件下。目前用来克服此问题的算法由于性能和噪声差而无法提供可靠的结果,并且在黑暗条件下的本地化质量仍然不足以实用。在本文中,我们提出了一种新型的大满贯方法,能够使用生成对抗网络(GAN)预处理模块在弱光下工作,以增强输入图像上的光条件,从而改善本地化的鲁棒性。在定制室内数据集上评估了所提出的算法,该数据集由14个序列组成,该序列具有不同的照明水平和使用运动捕获系统收集的地面真相数据。根据实验结果,即使在极低的光线条件下,提出的方法的可靠性仍然很高,在最黑暗序列上提供了25.1%的跟踪时间,而现有方法仅实现了序列时间的0.6%。
Existing visual SLAM approaches are sensitive to illumination, with their precision drastically falling in dark conditions due to feature extractor limitations. The algorithms currently used to overcome this issue are not able to provide reliable results due to poor performance and noisiness, and the localization quality in dark conditions is still insufficient for practical use. In this paper, we present a novel SLAM method capable of working in low light using Generative Adversarial Network (GAN) preprocessing module to enhance the light conditions on input images, thus improving the localization robustness. The proposed algorithm was evaluated on a custom indoor dataset consisting of 14 sequences with varying illumination levels and ground truth data collected using a motion capture system. According to the experimental results, the reliability of the proposed approach remains high even in extremely low light conditions, providing 25.1% tracking time on darkest sequences, whereas existing approaches achieve tracking only 0.6% of the sequence time.