论文标题
机器人认知体系结构的存储系统及其在ARMARX中的实现
A Memory System of a Robot Cognitive Architecture and its Implementation in ArmarX
论文作者
论文摘要
人类和机器人等认知剂通过大量的传感器来感知其环境,这些传感器产生的数据流需要处理以产生智能行为。支持认知和AI驱动的机器人技术的关键问题是如何在认知机器人控制体系中有效地组织和管理知识。我们认为,记忆是介导语义和感觉运动表示之间的这种体系结构的核心积极组成部分,协调了数据流和不同过程之间的事件的流动,并为认知体系结构提供了具有数据驱动的服务的组成部分,以吸引从感觉型数据中的语义数据抽象,从感觉型数据中进行启用和预测效应的sensorimotor数据,从而实现了执行和预测。 基于相关工作以及在开发ARMAR类人体机器人系统中获得的经验,我们将记忆系统的概念和技术要求确定为认知机器人控制体系结构的核心组成部分,从而有助于实现高级认知能力,例如解释,推理,推理,假期,仿真和增强。从概念上讲,内存应具有主动性,支持多模式数据表示,关联知识,内省性并具有固有的情节结构。从技术上讲,内存应支持分布式设计,具有访问效率且能够长期数据存储。我们介绍了我们的认知机器人控制体系结构的内存系统及其在机器人软件框架ARMARX中的实现。我们评估了记忆系统在转移速度,压缩,繁殖和预测能力方面的效率。
Cognitive agents such as humans and robots perceive their environment through an abundance of sensors producing streams of data that need to be processed to generate intelligent behavior. A key question of cognition-enabled and AI-driven robotics is how to organize and manage knowledge efficiently in a cognitive robot control architecture. We argue, that memory is a central active component of such architectures that mediates between semantic and sensorimotor representations, orchestrates the flow of data streams and events between different processes and provides the components of a cognitive architecture with data-driven services for the abstraction of semantics from sensorimotor data, the parametrization of symbolic plans for execution and prediction of action effects. Based on related work, and the experience gained in developing our ARMAR humanoid robot systems, we identified conceptual and technical requirements of a memory system as central component of cognitive robot control architecture that facilitate the realization of high-level cognitive abilities such as explaining, reasoning, prospection, simulation and augmentation. Conceptually, a memory should be active, support multi-modal data representations, associate knowledge, be introspective, and have an inherently episodic structure. Technically, the memory should support a distributed design, be access-efficient and capable of long-term data storage. We introduce the memory system for our cognitive robot control architecture and its implementation in the robot software framework ArmarX. We evaluate the efficiency of the memory system with respect to transfer speeds, compression, reproduction and prediction capabilities.