论文标题
OvSienko-Redou操作员的弯曲版本
Curved versions of the Ovsienko-Redou operators
论文作者
论文摘要
我们对最多$ n $的切向差异运营商进行了完整的分类,这些分类纯粹是根据laplacian在$ n $ dimensional歧管的环境空间上表示的。这给出了分类的弯曲类似物,这是由于Ovsienko(Redou and clerc)的,是球体上不变的双变量运算符。作为一个应用程序,我们构建了一大批形式上自我相关的差异差分运算符。
We give a complete classification of tangential bidifferential operators of total order at most $n$ which are expressed purely in terms of the Laplacian on the ambient space of an $n$-dimensional manifold. This gives a curved analogue of the classification, due to Ovsienko--Redou and Clerc, of conformally invariant bidifferential operators on the sphere. As an application, we construct a large class of formally self-adjoint conformally invariant differential operators.