论文标题
非权力法律规模不相称的系统
Non-power-law universal scaling in incommensurate systems
论文作者
论文摘要
先前对不一致系统的研究得出的结论是,这种系统中的临界缩放敏感取决于确定不汇总的非理性$α$。与这种信念相反,在规范的Harper-Hofstadter模型中,我们表明几乎所有$α$都存在通用$α$的缩放。此关键缩放的特征是非功率定律时间长度缩放$ t \ sim r^{ζ\ log \ log r r} $。我们以玻色气体的超流体分数和费米气体的热容量来证明这一点。我们认为,这种缩放是广泛的不一致模型的一般性。
Previous studies of incommensurate systems concluded that critical scaling in such systems is sensitively dependent on the irrational, $α$, which determines the incommensuration. Contrary to this belief, in the canonical Harper-Hofstadter model, we show there is universal $α$-independent scaling for almost all $α$. This critical scaling is characterized by non-power law time-length scaling $t \sim r^{ζ\log \log r}$. We demonstrate this in the superfluid fraction of a Bose gas, and the heat capacity of a Fermi gas. We argue that this scaling is generic of a broad class of incommensurate models.