论文标题
使用潜在的高斯工艺校准心脏歧管上的心脏电生理模型
Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds
论文作者
论文摘要
心脏中电激发和恢复的模型越来越详细,但尚未在临床环境中定期使用以指导患者的个性化干预措施。主要挑战之一是从有限的测量值中校准模型,这些测量值在标准临床过程中可以在患者中进行。在这项工作中,我们提出了一个新的框架,用于使用心脏兴奋性的局部测量对心脏左心房的概率校准进行概率校准。参数字段表示为歧管上的高斯过程,并通过替代函数链接到测量值,这些函数从局部参数值映射到测量值。然后获得参数场的后验分布。我们表明,我们的方法可以恢复用于生成有效难治期的局部合成测量的参数字段。我们的方法适用于使用临床方案收集的其他测量类型,更普遍地用于校准,而模型参数在多种方面有所不同。
Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on manifolds and are linked to measurements via surrogate functions that map from local parameter values to measurements. The posterior distribution of parameter fields is then obtained. We show that our method can recover parameter fields used to generate localised synthetic measurements of effective refractory period. Our methodology is applicable to other measurement types collected with clinical protocols, and more generally for calibration where model parameters vary over a manifold.