论文标题
离线零和马尔可夫游戏的基于模型的增强学习
Model-Based Reinforcement Learning for Offline Zero-Sum Markov Games
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper makes progress towards learning Nash equilibria in two-player zero-sum Markov games from offline data. Specifically, consider a $γ$-discounted infinite-horizon Markov game with $S$ states, where the max-player has $A$ actions and the min-player has $B$ actions. We propose a pessimistic model-based algorithm with Bernstein-style lower confidence bounds -- called VI-LCB-Game -- that provably finds an $\varepsilon$-approximate Nash equilibrium with a sample complexity no larger than $\frac{C_{\mathsf{clipped}}^{\star}S(A+B)}{(1-γ)^{3}\varepsilon^{2}}$ (up to some log factor). Here, $C_{\mathsf{clipped}}^{\star}$ is some unilateral clipped concentrability coefficient that reflects the coverage and distribution shift of the available data (vis-à-vis the target data), and the target accuracy $\varepsilon$ can be any value within $\big(0,\frac{1}{1-γ}\big]$. Our sample complexity bound strengthens prior art by a factor of $\min\{A,B\}$, achieving minimax optimality for the entire $\varepsilon$-range. An appealing feature of our result lies in algorithmic simplicity, which reveals the unnecessity of variance reduction and sample splitting in achieving sample optimality.