论文标题
树木配置空间的较高拓扑复杂性的界限
Bounds for the higher topological complexity of configuration spaces of trees
论文作者
论文摘要
对于树$ t $,我们表明,对于$ n $的许多正整数值,以及一个整数$ s \ geq 2 $,较高的拓扑复杂性$ tc_s $ tc_s $ tc_s $ tc_s $ u \ mathcal {c}^nt $是最大的。换句话说,我们证明,$ tc_s(u \ mathcal {c}^nt)= s(hdim(u \ mathcal {c}^nt))$,其中$ hdim $代表同型尺寸。
For a tree $T$, we show that for many positive integer values of $n$, and an integer $s \geq 2$, the higher topological complexity $TC_s$ of the unordered configuration spaces of trees $U\mathcal{C}^nT$, is maximal. In other words, we prove that, $TC_s(U \mathcal{C}^nT) = s(hdim (U \mathcal{C}^nT))$ where $hdim$ stands for the homotopy dimension.