论文标题

生物学启发的动态阈值,用于尖峰神经网络

Biologically Inspired Dynamic Thresholds for Spiking Neural Networks

论文作者

Ding, Jianchuan, Dong, Bo, Heide, Felix, Ding, Yufei, Zhou, Yunduo, Yin, Baocai, Yang, Xin

论文摘要

动态膜电位阈值是生物神经元的重要特性之一,是一种自发调节机制,可维持神经元稳态,即神经元的恒定总尖峰发射速率。因此,神经元的发射速率受动态尖峰阈值的调节,该阈值已在生物学上进行了广泛研究。机器学习社区中的现有工作不采用生物启发的尖峰阈值方案。这项工作旨在通过引入一种新型的生物启发的动态能量暂时性阈值(BDETT)方案来弥合这一差距。提出的BDETT方案反映了两个可行的观测:动态阈值具有1)与平均膜电位的正相关,以及2)与前面的去极化速率的负相关。我们验证了拟议的BDETT对机器人障碍物避免的有效性和在正常条件和各种退化条件下的连续控制任务,包括嘈杂的观察,权重和动态环境。我们发现,在所有测试条件下,BDETT优于现有的静态和启发式阈值方法,我们确认提出的生物启发的动态阈值方案为复杂的真实世界任务中的SNN提供了体内平衡。

The dynamic membrane potential threshold, as one of the essential properties of a biological neuron, is a spontaneous regulation mechanism that maintains neuronal homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the neuron firing rate is regulated by a dynamic spiking threshold, which has been extensively studied in biology. Existing work in the machine learning community does not employ bioinspired spiking threshold schemes. This work aims at bridging this gap by introducing a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed BDETT scheme mirrors two bioplausible observations: a dynamic threshold has 1) a positive correlation with the average membrane potential and 2) a negative correlation with the preceding rate of depolarization. We validate the effectiveness of the proposed BDETT on robot obstacle avoidance and continuous control tasks under both normal conditions and various degraded conditions, including noisy observations, weights, and dynamic environments. We find that the BDETT outperforms existing static and heuristic threshold approaches by significant margins in all tested conditions, and we confirm that the proposed bioinspired dynamic threshold scheme offers homeostasis to SNNs in complex real-world tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源