论文标题
检测异常加密货币交易:基于机器学习取证的AML/CFT应用
Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application of Machine Learning-based Forensics
论文作者
论文摘要
在塑造货币互联网时,将区块链和分布式分类帐技术(DLT)应用于金融部门引发了监管问题。值得注意的是,尽管在该领域启用了用户匿名性可以保护隐私和数据保护,但缺乏可识别性阻碍了责任制,并挑战了打击洗钱以及恐怖主义和扩散的融资(AML/CFT)的斗争。随着执法机构和私营部门的运用法医来跟踪本质上具有社会技术的生态系统的加密货币转移,本文着重于这些技术在某个领域的不断增长的相关性,在这些领域中,它们的部署影响了球体的特征和进化。特别是,这项工作为机器学习和交易图分析方法的应用提供了上下文化的见解。也就是说,它通过各种技术分析了一个现实的比特币交易数据集,该数据集表示为有向图网络。区块链交易作为复杂网络的建模表明,基于图的数据分析方法的使用可以帮助对交易进行分类和识别非法交易。实际上,这项工作表明,称为图形卷积网络(GCN)和图形注意网络(GAT)的神经网络类型是有希望的AML/CFT解决方案。值得注意的是,在这种情况下,GCN首次使用其他经典方法和GAT来检测比特币中的异常。最终,该论文坚持了公私协同的价值,以设计意识到解释性和数据开放性精神的法医策略。
In shaping the Internet of Money, the application of blockchain and distributed ledger technologies (DLTs) to the financial sector triggered regulatory concerns. Notably, while the user anonymity enabled in this field may safeguard privacy and data protection, the lack of identifiability hinders accountability and challenges the fight against money laundering and the financing of terrorism and proliferation (AML/CFT). As law enforcement agencies and the private sector apply forensics to track crypto transfers across ecosystems that are socio-technical in nature, this paper focuses on the growing relevance of these techniques in a domain where their deployment impacts the traits and evolution of the sphere. In particular, this work offers contextualized insights into the application of methods of machine learning and transaction graph analysis. Namely, it analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques. The modeling of blockchain transactions as a complex network suggests that the use of graph-based data analysis methods can help classify transactions and identify illicit ones. Indeed, this work shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution. Notably, in this scenario GCN outperform other classic approaches and GAT are applied for the first time to detect anomalies in Bitcoin. Ultimately, the paper upholds the value of public-private synergies to devise forensic strategies conscious of the spirit of explainability and data openness.