论文标题

通过MIMO多个访问渠道进行沟通效率的联合学习

Communication-Efficient Federated Learning over MIMO Multiple Access Channels

论文作者

Jeon, Yo-Seb, Amiri, Mohammad Mohammadi, Lee, Namyoon

论文摘要

沟通效率对于无线联合学习系统至关重要。在本文中,我们提出了一种通过多输入多输出(MIMO)多访问渠道(MAC)进行联合学习的沟通效率策略。提出的策略包括两个组成部分。在发送本地计算的梯度时,每个设备都使用块稀疏性将高维局部梯度压缩到多个低维梯度向量。当通过MIMO-MAC接收压缩局部梯度的叠加时,参数服务器(PS)执行联合MIMO检测和稀疏的局部梯度恢复。受涡轮解码原理的启发,我们的联合检测和恢复算法可以通过迭代交换其信念以换取MIMO检测和稀疏的局部梯度恢复输出,从而准确地恢复了高维局部梯度。然后,我们分析拟议算法的重建误差及其对联合学习收敛速率的影响。通过模拟,我们的梯度压缩和联合检测和恢复方法大大降低了通信成本,同时实现了相同的分类精度而没有任何压缩。

Communication efficiency is of importance for wireless federated learning systems. In this paper, we propose a communication-efficient strategy for federated learning over multiple-input multiple-output (MIMO) multiple access channels (MACs). The proposed strategy comprises two components. When sending a locally computed gradient, each device compresses a high dimensional local gradient to multiple lower-dimensional gradient vectors using block sparsification. When receiving a superposition of the compressed local gradients via a MIMO-MAC, a parameter server (PS) performs a joint MIMO detection and the sparse local-gradient recovery. Inspired by the turbo decoding principle, our joint detection-and-recovery algorithm accurately recovers the high-dimensional local gradients by iteratively exchanging their beliefs for MIMO detection and sparse local gradient recovery outputs. We then analyze the reconstruction error of the proposed algorithm and its impact on the convergence rate of federated learning. From simulations, our gradient compression and joint detection-and-recovery methods diminish the communication cost significantly while achieving identical classification accuracy for the case without any compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源