论文标题

平滑的刚性,以实现更高维度接触Anosov流动

Smooth rigidity for higher dimensional contact Anosov flows

论文作者

Gogolev, Andrey, Hertz, Federico Rodriguez

论文摘要

我们将匹配函数技术应用于触点Anosov流的设置,以满足束假设。这使我们能够概括Feldman-ornstein〜 \ cite {fo}的3维刚性结果。也就是说,我们表明,如果两个这样的Anosov流为$ C^0 $ conjugate,则它们为$ c^{r} $,在[1,2)$中的某些$ r \ in [1,2)$甚至$ c^\ infty $ conjugate conjugate下,根据一些其他假设。例如,这适用于$ 1/4 $ pinched的地球曲面上的紧凑型分节曲率的歧管流动。我们还可以利用结果来恢复Hamendstädt的明显长度频谱刚度结果,以实现真正的双曲线歧管。

We apply the matching functions technique in the setting of contact Anosov flows which satisfy a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman-Ornstein~\cite{FO}. Namely, we show that if two such Anosov flows are $C^0$ conjugate then they are $C^{r}$, conjugate for some $r\in[1,2)$ or even $C^\infty$ conjugate under some additional assumptions. This, for example, applies to $1/4$-pinched geodesic flows on compact Riemannian manifolds of negative sectional curvature. We can also use our result to recover Hamendstädt's marked length spectrum rigidity result for real hyperbolic manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源