论文标题

在b-酰基色的图上

On b-acyclic chromatic number of a graph

论文作者

Anholcer, Marcin, Cichacz, Sylwia, Peterin, Iztok

论文摘要

令$ g $为图。我们介绍了$ g $的无环b-chromation数量,以类似于$ g $的b奇异数。图$ g $的无环着色是地图$ c:v(g)\ rightarrow \ {1,\ dots,k \} $,以至于$ c(u)\ neq c(n neq c(v)$ for e(g)中的任何$ uv \ in e(g)$ in(g)$和诱导的两种颜色$ i, 森林。在$ g $的所有无环着色的集合中,我们定义了一种关系,其及时关闭是严格的部分订单。其最小元素的最小基数是$ g $的无环色$ a​​(g)$ a(g)$ a(g)$ g $,其最小元素的最大基数是无环b-chrostic number $ a_b(g)$ g $ $ g $。我们介绍了$ a_b(g)$的几个属性。特别是,我们为几个已知的图形家族得出$ a_b(g)$,为$ a_b(g)$得出某些界限,将$ a_b(g)$与其他一些参数进行比较,并将某些有影响力的工具从b-colorings到acyclic b-colorings进行概括。

Let $G$ be a graph. We introduce the acyclic b-chromatic number of $G$ as an analogue to the b-chromatic number of $G$. An acyclic coloring of a graph $G$ is a map $c:V(G)\rightarrow \{1,\dots,k\}$ such that $c(u)\neq c(v)$ for any $uv\in E(G)$ and the induced subgraph on vertices of any two colors $i,j\in \{1,\dots,k\}$ induces a forest. On the set of all acyclic colorings of $G$ we define a relation whose transitive closure is a strict partial order. The minimum cardinality of its minimal element is then the acyclic chromatic number $A(G)$ of $G$ and the maximum cardinality of its minimal element is the acyclic b-chromatic number $A_b(G)$ of $G$. We present several properties of $A_b(G)$. In particular, we derive $A_b(G)$ for several known graph families, derive some bounds for $A_b(G)$, compare $A_b(G)$ with some other parameters and generalize some influential tools from b-colorings to acyclic b-colorings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源