论文标题
智能电表数据使用各种经常性自动编码器引起注意的智能电表数据异常检测
Smart Meter Data Anomaly Detection using Variational Recurrent Autoencoders with Attention
论文作者
论文摘要
在能源系统的数字化中,传感器和智能电表越来越多地用于监视生产,运行和需求。基于智能电表数据的异常检测对于在早期阶段识别潜在的风险和异常事件至关重要,这可以作为及时启动适当动作和改善管理的参考。但是,能量系统的智能电表数据通常缺乏标签,并且包含噪声和各种模式,而没有明显的周期性。同时,在不同的能量场景中对异常的模糊定义和高度复杂的时间相关性对异常检测构成了巨大的挑战。许多传统的无监督的异常检测算法(例如基于群集或距离的模型)对噪声不强大,也不完全利用时间序列中的时间依赖性以及在多个变量(传感器)中的其他依赖关系。本文提出了一种基于带有注意机制的变异复发自动编码器的无监督异常检测方法。凭借来自智能电表的“肮脏”数据,我们的方法预示了缺失的值和全球异常,以在训练中缩小其贡献。本文与基于VAE的基线方法和其他四种无监督的学习方法进行了定量比较,证明了其有效性和优势。本文通过一项实际案例研究进一步验证了所提出的方法,该研究方法是检测工业加热厂的供水温度异常。
In the digitization of energy systems, sensors and smart meters are increasingly being used to monitor production, operation and demand. Detection of anomalies based on smart meter data is crucial to identify potential risks and unusual events at an early stage, which can serve as a reference for timely initiation of appropriate actions and improving management. However, smart meter data from energy systems often lack labels and contain noise and various patterns without distinctively cyclical. Meanwhile, the vague definition of anomalies in different energy scenarios and highly complex temporal correlations pose a great challenge for anomaly detection. Many traditional unsupervised anomaly detection algorithms such as cluster-based or distance-based models are not robust to noise and not fully exploit the temporal dependency in a time series as well as other dependencies amongst multiple variables (sensors). This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism. with "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training. This paper makes a quantitative comparison with the VAE-based baseline approach and four other unsupervised learning methods, demonstrating its effectiveness and superiority. This paper further validates the proposed method by a real case study of detecting the anomalies of water supply temperature from an industrial heating plant.