论文标题

分析加密货币市场中交易时间的波动

Analysis of inter-transaction time fluctuations in the cryptocurrency market

论文作者

Kwapień, Jarosław, Wątorek, Marcin, Bezbradica, Marija, Crane, Martin, Mai, Tai Tan, Drożdż, Stanisław

论文摘要

我们分析了代表在一些不同的加密货币交易平台上交易的主要加密货币的数据。我们专注于这样的数量,例如交易时间,时间单位的交易数量,交易量和波动率。我们表明,交易时间显示长距离幂律自相关。这些导致多纹状体由奇异光谱$ f(α)$的右侧不对称表达,这表明市场活动增加的时期的特征是与安静市场相比,多纹状体更丰富。我们还表明,拉伸指数分布和幂律尾分布都无法为这项工作中考虑的数量的累积分布函数建模。对于每个数量,某些数据集可以由前者建模,而后者的某些数据集则可以由后者进行建模,而在其他情况下都失败了。一个有趣但难以解释的观察结果是,来自不同交易平台的并行数据集可以显示出不同的统计属性。

We analyse tick-by-tick data representing major cryptocurrencies traded on some different cryptocurrency trading platforms. We focus on such quantities like the inter-transaction times, the number of transactions in time unit, the traded volume, and volatility. We show that the inter-transaction times show long-range power-law autocorrelations. These lead to multifractality expressed by the right-side asymmetry of the singularity spectra $f(α)$ indicating that the periods of increased market activity are characterised by richer multifractality compared to the periods of quiet market. We also show that neither the stretched exponential distribution nor the power-law-tail distribution are able to model universally the cumulative distribution functions of the quantities considered in this work. For each quantity, some data sets can be modeled by the former, some data sets by the latter, while both fail in other cases. An interesting, yet difficult to account for, observation is that parallel data sets from different trading platforms can show disparate statistical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源