论文标题

稀有分数:一种新的指标,可以评估合成图像的不常见性

Rarity Score : A New Metric to Evaluate the Uncommonness of Synthesized Images

论文作者

Han, Jiyeon, Choi, Hwanil, Choi, Yunjey, Kim, Junho, Ha, Jung-Woo, Choi, Jaesik

论文摘要

图像合成中的评估指标起着测量生成模型的性能的关键作用。 However, most metrics mainly focus on image fidelity.现有的多样性指标是通过比较分布来得出的,因此它们无法量化每个生成图像的多样性或稀有程度。在这项工作中,我们提出了一个新的评估度量,称为“稀有分数”,以测量通过生成模型合成的每个图像的稀有性。我们首先表明经验观察表明,共同样品彼此接近,稀有样品在特征空间最近的邻居距离处彼此遥远。然后,我们使用我们的指标来证明可以有效比较不同生成模型产生稀有图像的程度。我们还提出了一种比较共享相同概念(例如Celeba-HQ和FFHQ)的数据集之间的稀有度的方法。最后,我们分析了在特征空间的不同设计中的指标的使用,以更好地了解特征空间和产生的稀疏图像之间的关系。代码将用于研究社区在线公开提供。

Evaluation metrics in image synthesis play a key role to measure performances of generative models. However, most metrics mainly focus on image fidelity. Existing diversity metrics are derived by comparing distributions, and thus they cannot quantify the diversity or rarity degree of each generated image. In this work, we propose a new evaluation metric, called `rarity score', to measure the individual rarity of each image synthesized by generative models. We first show empirical observation that common samples are close to each other and rare samples are far from each other in nearest-neighbor distances of feature space. We then use our metric to demonstrate that the extent to which different generative models produce rare images can be effectively compared. We also propose a method to compare rarities between datasets that share the same concept such as CelebA-HQ and FFHQ. Finally, we analyze the use of metrics in different designs of feature spaces to better understand the relationship between feature spaces and resulting sparse images. Code will be publicly available online for the research community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源